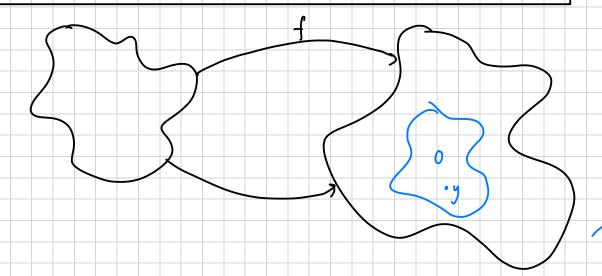
Continuity

Preimages

Inverse image of a set under action of a function



Fibre

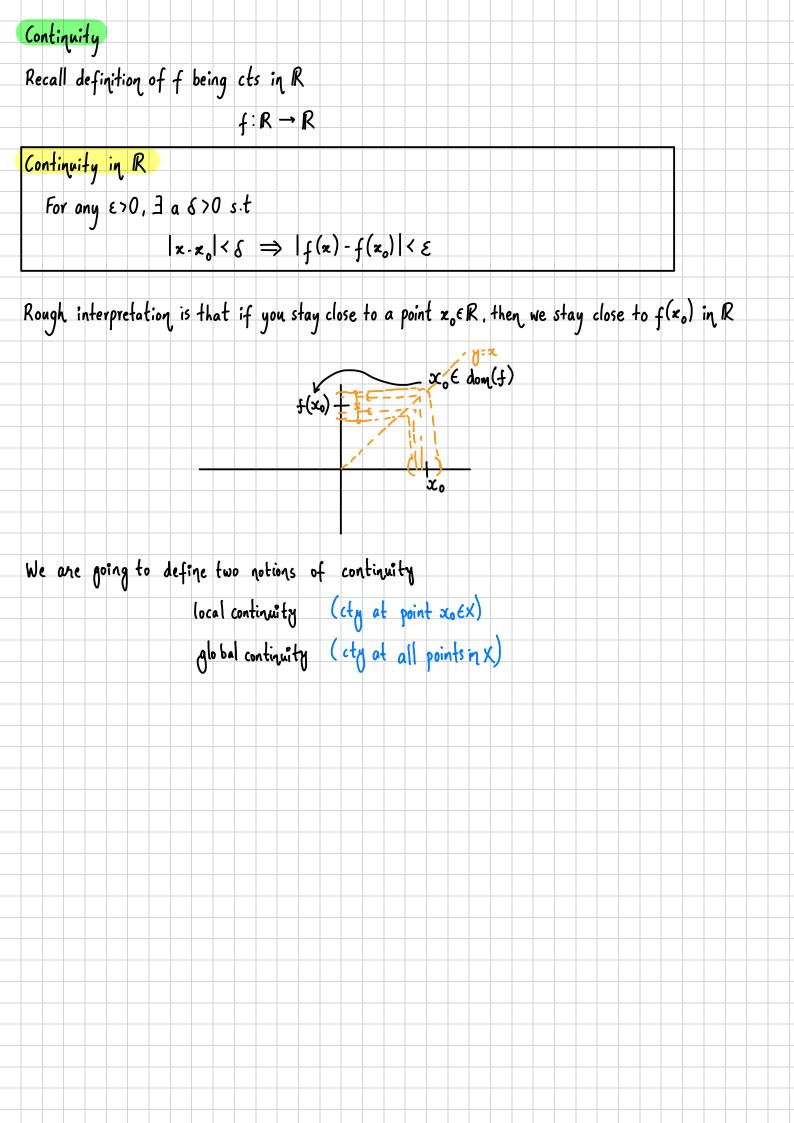
Fibre for y

Note: possible that no exists with f(x) = y

Suppose $F_y \neq \phi$. There is atleast one $x \in X$ s.t f(x) = y

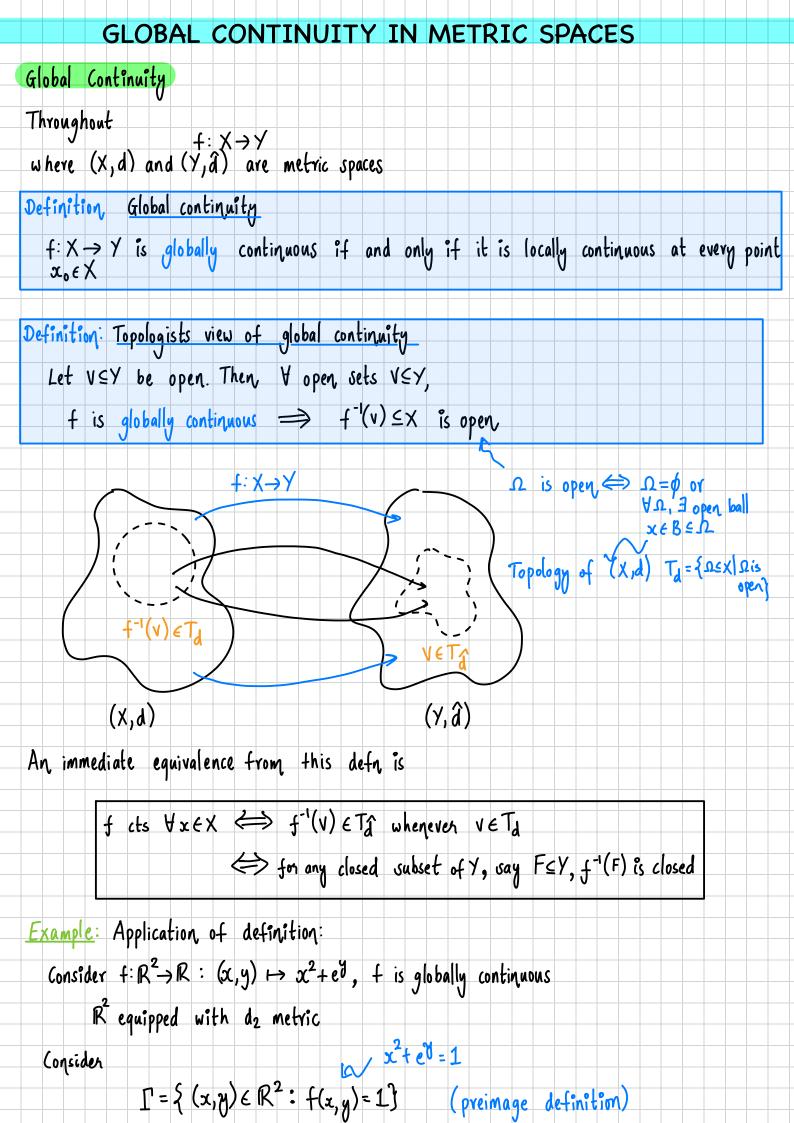
Note:

- ▶ f (A) does NOT mean an inverse of f exists
- ▶ f'(A) is the set of points in X which are mapped into A.



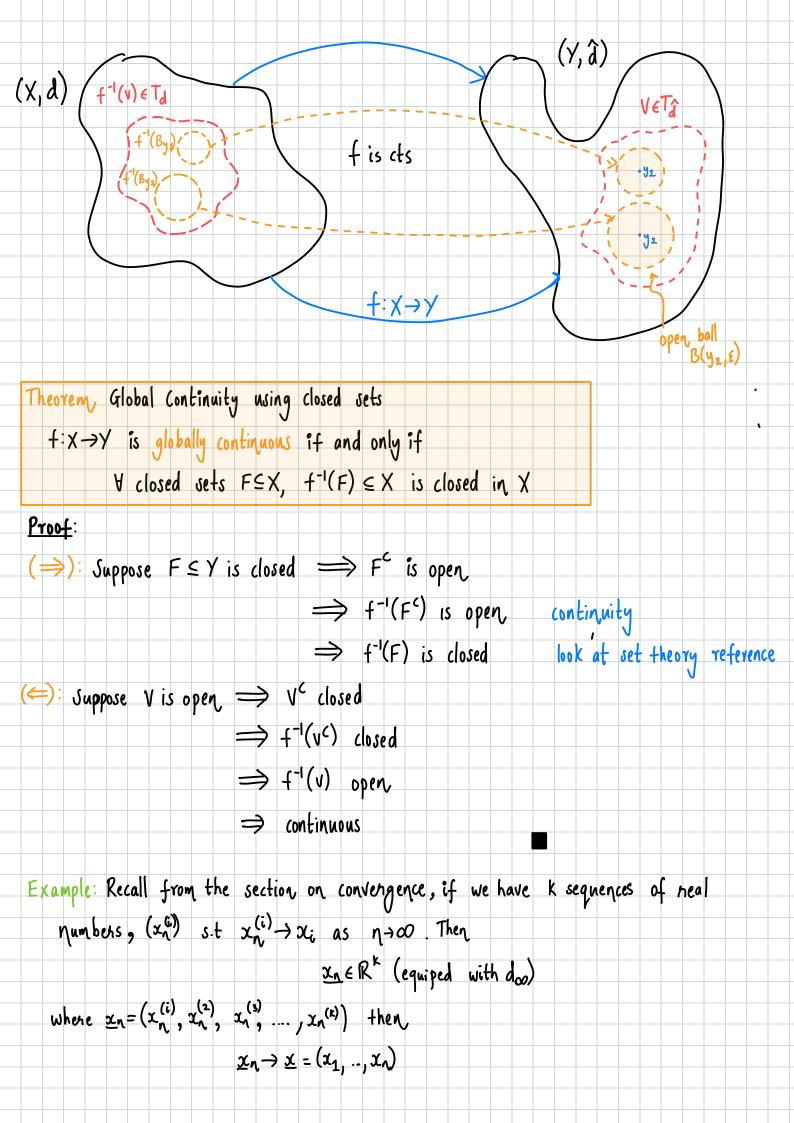
					L(C	A	L		U	N	ΙŢ	N	U.		Y	T	Ν	N	16		K1	ک.	٥	1	A(رل	:5					
n	r.	.1.		ſ		1		 	٠,																								
De	fin	IT10	n	7	1000	al (.on 1	ciqu	ity																						_	+	
D	fir	:4:	0M	10	ام	(0	at:	0 M I -	L.,																							П	
									<i> </i>																								
	Le-	t ((X)	_d,	()	an	d	(Y,	dy) .	be	me	<i>tric</i>	Sp	ace	?5																	
												`		- 1																			
	The	en																														Н	
					. /			1			1		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			1/		_	7		^	,										Н	
		f	ΣХ	\rightarrow	У	is	Con	tin	uou	5 (at	X ₀	€X	<	\Rightarrow	, A	٤,	0,	3 E	5 > (U	s.t											
							1 /	/ _r (\	rl	۰. ۱	\			١		,	1/		1	, ,											Н	-
							a _y	٠ţ١	X],	† \	Z 01	<i> </i>	٤	W	nen	eve	Y	a (:	K, K	۰۱۹	6											Н	
M	any	ſ	oce [.]	5 0	f c	ont	in u	iłn																									
	J				1		ľ																										
Th	eoi	(en	١.																														
												,																					
	Fol	low	ing	st	ate	mei	nts	are	2	iniv	rale	nt																				\blacksquare	
	1.1		<i>C</i>	_	r			1																									
	(1)	- ع	δ.	de.	t7	gi	ren	ab	ove																							H	
	(::) 5	٦-	ha	Ш,	,0YC	ĺΛΝ	C O1	ntin	<u>u:</u> 1																							
							_				,																						
		G	iver	1 8	>0) , =	١٤.	0	5 .۰	ł	£(B(2	5.6	:))	<u>c</u>	В(.	f(K ₀)	٤)														
							_																										
				B(x	(.6.)	1	>	1					У		,-		1	_	_	B(f (1	ره) ,	٤)									-	
					X			01))	1 /	f(x.)				- (· - (.11									₩	
									/					_	-		/	/		f (B(2	., 6	377									-	
																_	/															H	-
	(:::	١٨	00.4		4	dol		1 م	C A #	l: -	1:		L ,		oint	ا م																	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	, ,	PEV	L '	- 1	uej	7	υŢ	CUI	LLIN	יייען	"	,	ľ	טות נ	u ı		0															
		Let	١	bi	e o	pe r	i	, y	an	d	t()	(a)	εV.																				
											ľ	U.																					
		The	η.	E	pe	n b	all	BS	EX	5.1	t																					\Box	_
						•						/	(2)	. .	,																	-	
							i)	X o	e B		ii/	† (B).	۲V				_		,	V											\blacksquare	
									_	\)		<i></i>	_	1/				rl	() ()	د ۱	,			
					,	(1	٠.٣	0	t):	.11.	()	Z	/		V	pe	l	inq	1	× _o /	\ €\	,			
						`										(١	,,,,	0'		<u>-</u> د	– в	(t)	(2	٤ ()							
									/								\	-						0	, ,								
	(iv) [.et	V	οp	eŋ	in	Y	ano	L	f(z) (٧.	TI	ren	E	op	en	set	· u	<u>c</u>	Χ:	s.t										
					,	V											1	·															
								2	ξV	L	and	f	(u) ⊆	V																	+	-
	1	_							1) 4	0	. 11																				+	-
	(V	I to	OY C	ny	se	que	nc	25	(x,	Un:	, 1	vit	\ [']	ار	×	0																+	+
				•					rl	~) _	, (()	as																		
									†\	KN		†	\X	0′	us	· /	֡֡֡֞֞֞֞֞֜֞֞֜֞֞֜֞֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡	0														_	-

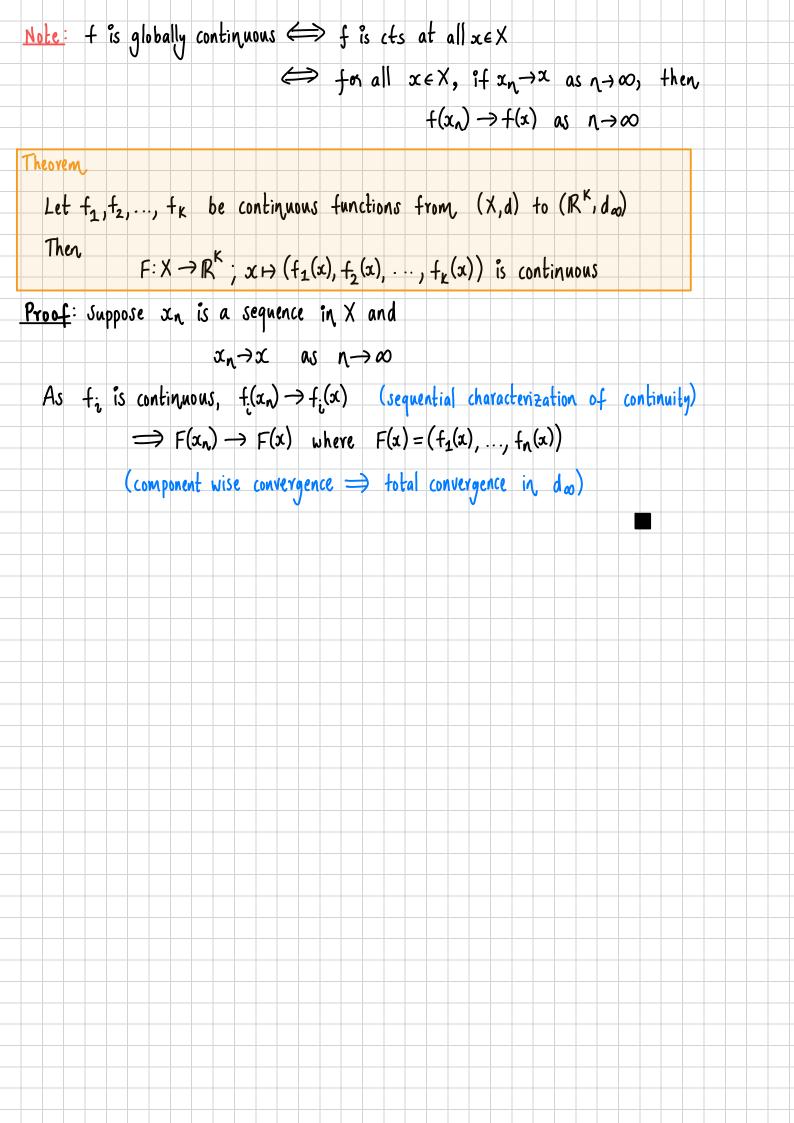
```
Proof:
(v) \Rightarrow (v):
   Let x_0 \in X and (x_n)_{n=1}^{\infty} a sequence in X such that x_n \to \infty as n \to \infty
  Assuming (PV) is true
   Want to show that f(x_n) \rightarrow f(x_0) as \eta \rightarrow \infty
    Let V be open in Y and f(x_0) \in V. By iv) \exists open set USX such that x_0 \in U and f(u) \in V
       U is open \Longrightarrow \exists \ \epsilon > 0 such that B(x_0, \epsilon) \subseteq V (defin of open)
        As x_n \to x_0, we can find N>0 s.t. d(x_n, x_0) < \varepsilon \quad \forall n > n (defin of convergence)
        Thus f(x_n) \in f(v) \subseteq V \ \forall \ n > n
          As V is arbitrary, f(x_1) \rightarrow f(x_2) as n \rightarrow \infty
(v) \Rightarrow (i): we will show the contrapositive
                                   \sim(i) \Rightarrow \sim(v)
(ni) \exists \epsilon > 0 \ \forall \epsilon > 0 \ \text{s.t.} \ \hat{d}(f(x), f(x_0)) \ge \epsilon \text{ for some } x \in X \text{ that satisfies}
                                       \delta(x,x_0)<\delta (~(i))
       For each nEIN, define the set
                            A_n = \{x' \in X : d(x', x_0) < 1/n \quad \& \quad \widehat{d}(f(x'), f(x_0)) \ge \varepsilon\}
        By the above, this set is non-empty. So choose an element from An and call this chosen element x_n.
                 Then x_n \to x_0 as n \to \infty (as d(x_1 x_0) < 1/n) but \hat{d}(f(x_n), f(x_0)) \ge \varepsilon > 0
        And so f_n(x_n) + f(x_0) (this establishes n(v))
 Useful property of preimages
 Lemma:
    Let f: X \rightarrow Y be an arbitrary function and let A \subseteq Y and B \subseteq Y. Then
                      f(A) \leq B \iff A \leq f^{-1}(B)
```



Consider {1) ≤ 1R.			
All singleto	ns are closed	and $f^{-1}(\{1\}) = 1$	$\stackrel{1}{\Longrightarrow} \stackrel{\Gamma^1}{\Longrightarrow}$ is closed (oy global continuity
Constant functions	are continuous			
Theorem Constan	nt functions a	re continuous		
Let f:X→Y	': x → K, K	is fixed		
Then f is	continuous			
Proof:				<u> </u>
	all singletons	are closed.		
			⇒ X is closed	
1 (10)	7. WHOLE CHILITE	opace is cioperly	f is continuous	
c :1. C	1. 6 1.			
Composition of co				
Theorem Composit				
suppose f:X→	y and g:y-	≥Z be continu	ions. Then	
	$g \circ f: X \rightarrow Z$			
is continuous				
Proof: Let VS	Z be open.			
Then g	-1(V) = Y (s of	$e_1 \Rightarrow f^{-1}(g^{-1}(v))$)) is open in X	(by continuity)
	gof)		\	
	hat gof is ct			
Note A compos	sition can be	continuous but	its constituents may no	t
For example		(/1)- (1 1	>0	
		$f(t) = \begin{cases} 1 & t \\ -1 & t \end{cases}$	< 0	
		g(t) = 0 \ \	teR	
f is not con-		V		
		(gof)= 0	Y ter	
is continuous		,0,1,	4 00 00	

Proving open set	of global continuit	y	
Theorem, Global Con	V		
	oally continuous if	and only if	
	Y	.	
,	ets $V \subseteq Y$, $f^{-1}(V)$) = X is open	
Proof:			
(=>): (Using fibres))		
Suppose that f:	$X \rightarrow Y$ is globally con	tinuous and consider	an arbitrary open, set
	V ≤ Y.		
CASE 1: V # 0	then $f^{-1}(V) = \phi$ an	d o is open	
	ie V‡Ø and let y	'	
	then $F_y = \emptyset$ and		
		∃x∈X such that	
Since V is ope	n and f is cts =	$\Rightarrow \exists$ open ball $B(x, \varepsilon)$	(x) $\leq X$ and $x \in X$ such that
Therefore	f(B) ≤ V		
I nevetore	c-1/\] .		
	+ (V) = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$F_y = \bigcup_{x \in T_x^{-1}(x)} B(x, \varepsilon(x))$	
	Fyfø	xef-1(v)	
اره مونی و و و و	ocen halls are on	pen, f-1(v) is open	
		sen, 1 (17 13 Operu	
(#) (Using epsilon			
Conversely suppose	$+hat f^{-1}(v) \leq X$	is open Vopen sets	$V \subseteq Y \implies \forall f(x) \in V, B(f(x), \epsilon) \subseteq V$
Take an xeX			
Note $B(f(x), \varepsilon)$	is open in Y \Longrightarrow	$f^{-1}(B(f(x), \varepsilon))$ is open	, in X
Since $x \in f^{-1}(B(f(x)))$), E)), ∃δ(E) > 0 su	$ \text{sch that } B(x,s) \leq f^{-1} $	(B(f(x), E)) (defn of open)
	⇒ f is con		
Since y was arki	trary, f is globally		
01000 00 00 0101	13 9100010	Concinuosis	





BOUNDED FUNCTIONS AND UNIFORM CONVERGENCE

Discuss: Consider

$$C(X,Y) = \{ +: X \rightarrow Y : f \text{ is } cts \}$$

Thy to generalise c([0,1], R) and d₁, d₂, d₀ possible !!!

Inot possible! integration may not exist defined

Take c([0,1]) and do

$$d_{\infty}(f,g) = \sup\{|f(x)-g(x)| : x \in [0,1]\}$$

replace with a (f(x), g(x))

à is a metric on y

Attempt C(X,Y) (Y,a)

 $d(f_1g) = \sup \{ \hat{a}(f(x), g(x)) : x \in X \}$

Problem: d (f,9) & [0,∞) (may or may not; force bounded)

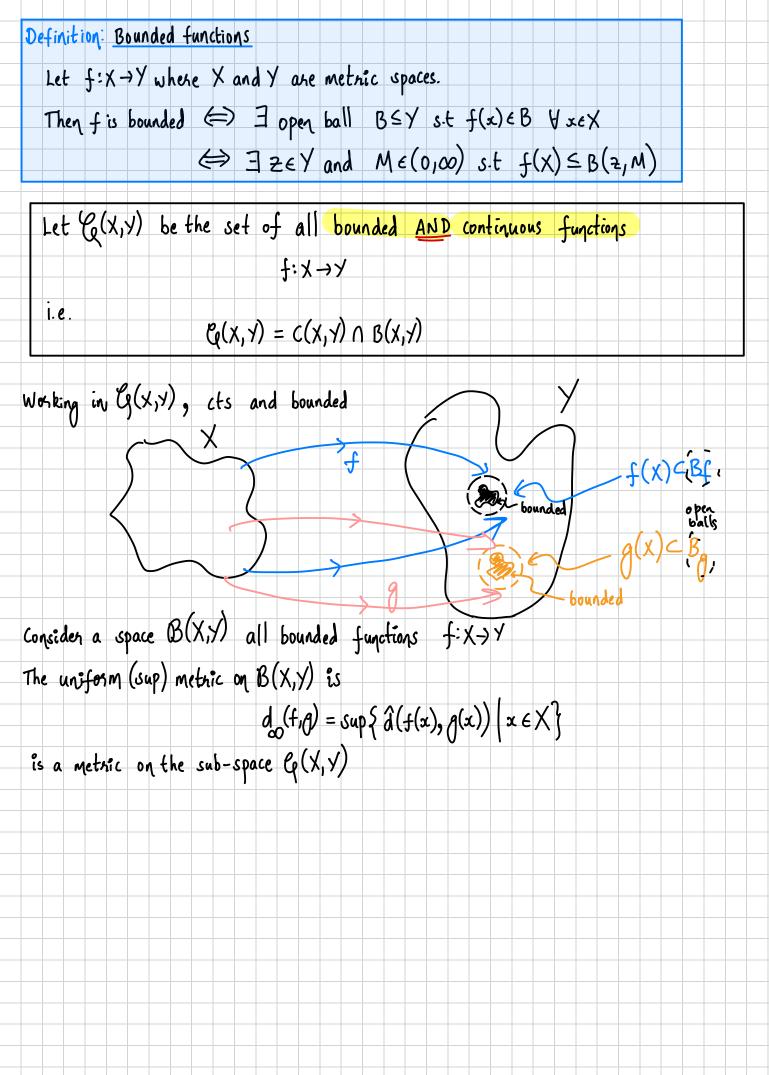
Definition: Bounded metric space

A metric space (X, d) is bounded if and only if

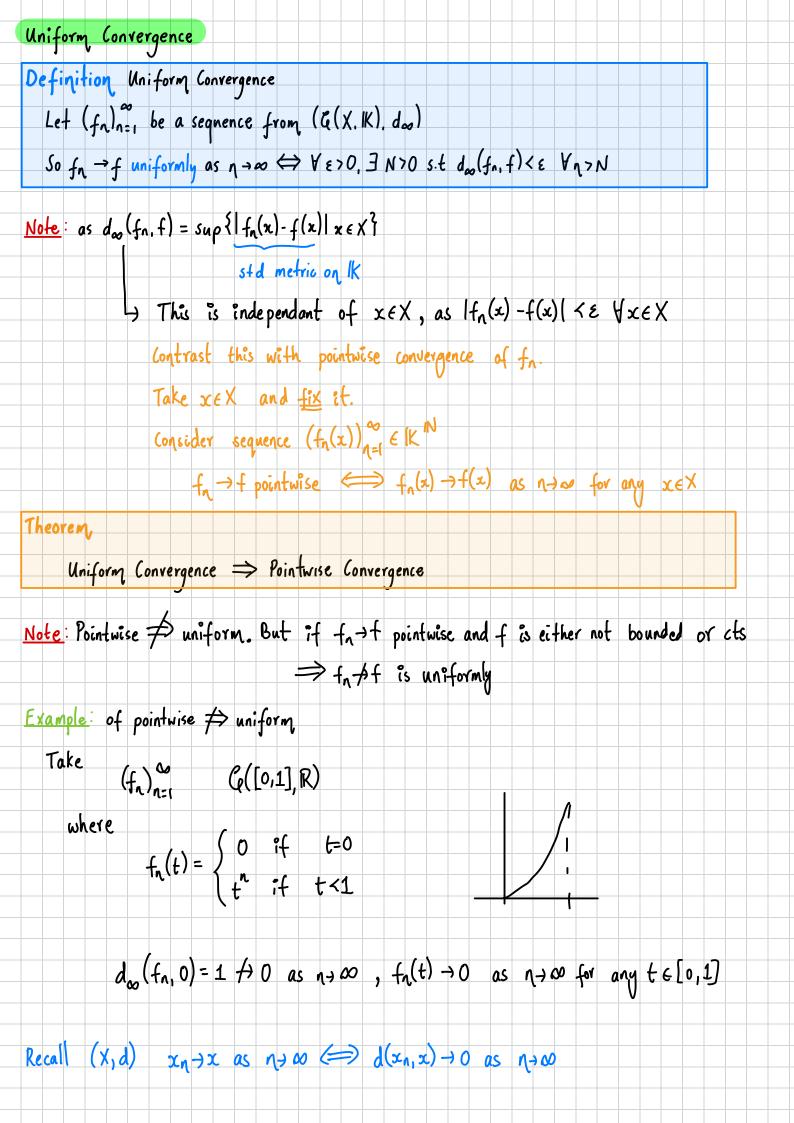
 $\exists M \in \mathbb{R}$ such that $d(a,b) \leq M \quad \forall a,b \in X$

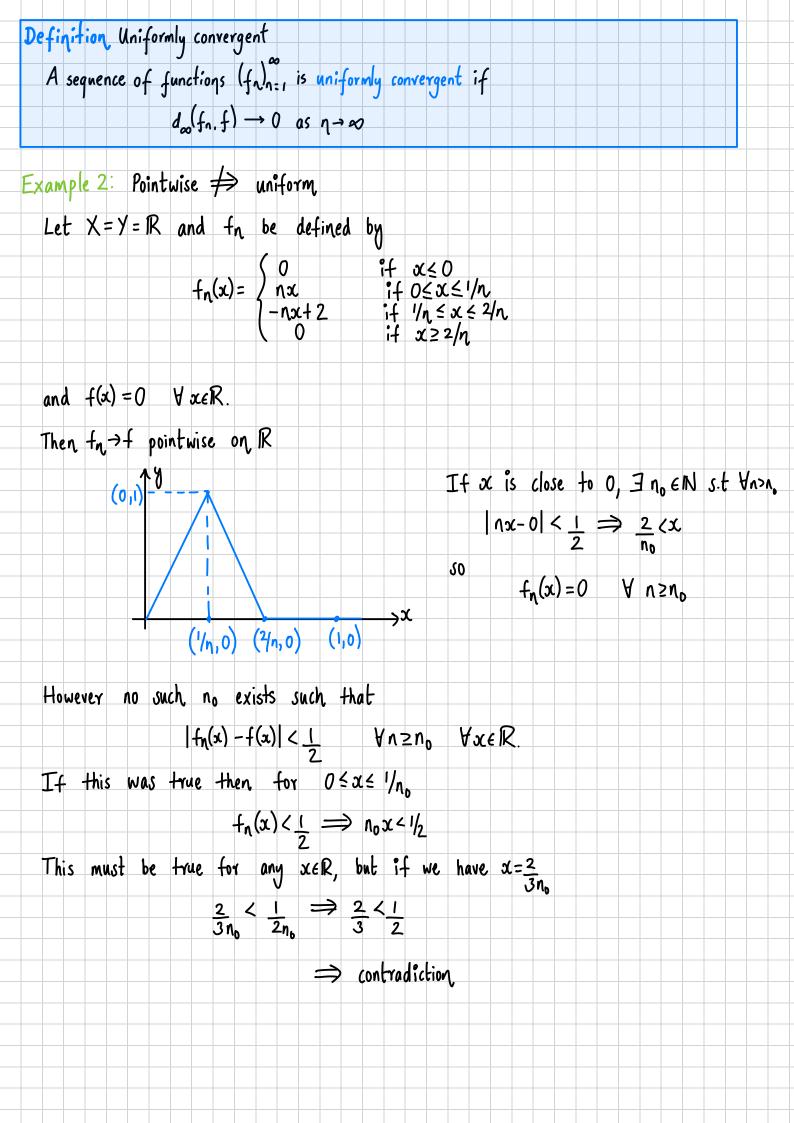
Bounded functions

has metric interpretation



```
c(x,y) the set of all cts functions from (x,d) to (y,\hat{d})
 \mathcal{B}(x,y) is the set of all bounded functions from X \to Y
Definition Open ball defn of bounded
    A function is bounded > 3 open ball B=Y such that f(x)=B
This means that \exists z \in Y and R \in (0, \infty) s.t. f(x) \subseteq B(z,R)
      s a consequence, if
                 x, x' and f(x), f(x')
         then
               \hat{d}(f(x), f(x')) \leq \hat{d}(f(x), z) + \hat{d}(f(x'), z) < 2R
We were able to generalise from d_{\infty} from C([0,1],\mathbb{R}) \to C([0,1] \to \mathbb{R})
                    d_{\infty}(f,g) = \sup \left\{ \hat{d}(f(x),g(x)) \mid x \in X^{3} \right\}
                                 uniform or sup metric on B(x, y)
                       \epsilon B(X,Y)
Now define
                G(X,Y)=B(X,Y)\cap C(X,Y) ~ continuous and bounded functions
        \Rightarrow (G(X,Y), d_{\infty}) is a metric space
Consider
              (&(X, IK), do,); IK=R or C
do induces a stronger notion of continuity and convergence.
```





Definition, pointwise convergence.

Let $f: X \to Y$ and $f_n: X \to Y$ be given, n=1,2,..., be given.

We say that $\{f_n\}$ converges pointwise to f iff $\lim_{n\to\infty} d_Y(f_n(x), f(x)) = 0$ $\forall x \in X$ for any fixed $x \in X$

The ε - δ definition is $\{f_n\}_{n\geq 1} \to f \text{ pointwise } \iff \text{for a given } \varepsilon > 0, \text{ given } x \in X, \exists N = N(x, \varepsilon) \text{ such that } d_Y(f_n(x), f(x)) < \varepsilon \quad \forall n \geq N$

 $N = N(x, \varepsilon)$ depends on x and ε .

Uniform convergence

Definition Uniform convergence

Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of mappings from (X, d_X) to (Y, d_Y) .

$$f_n: (X, d_X) \rightarrow (Y, d_Y).$$

We say that the sequences $\{f_n\}$ converges uniformly on X to a mapping $f: X \rightarrow Y$

if YE>O, INEN(E) such that

$$dy(f_n(x),f(x)) < \varepsilon$$

for all n2N and all xeX, i.e.

$$\lim_{n\to\infty} \left(\sup_{x\in X} d_y(f_n(x), f(x)) \right) = 0$$

Alternatively we say

$$\{f_n\}_{n=1}^{\infty} \rightarrow f$$
 uniformly if $d_{\infty}(f_n, f) \rightarrow 0$ as $n \rightarrow \infty$

$$d_{\infty}(f_n, f) = \sup_{x \in X} \{d_Y(f_n(x), f(x) | x \in X\}$$

```
Theorem:
   Let (X, d_X) and (Y, d_Y) be metric spaces and let f: X \rightarrow Y.
   Then the following are equivalent
       (i) f is continuous on X
      (9) f^{-1}(B) \leq f^{-1}(B) for all subsets B of Y
      (iii) f(A) \leq \overline{f(A)} for all subsets A of X
Proof:
   (i) \Rightarrow (ii):
   Consider any arbitrary BSY.
              \overline{B} is a closed subset of Y \Longrightarrow f^{-1}(\overline{B}) \leq X is closed (define of continuity)
   Further BSB (defn of dosure)
               \Rightarrow f^{-1}(B) \leq f^{-1}(\overline{B})
    and therefore
                      f^{-1}(B) \subseteq f^{-1}(B)
               closure is the smallest superset that is closed
   (ii) ⇒ (iii)
    Let ASX. Then
              if \beta = f(A) \implies A \subseteq f^{-1}(B) A \subseteq f^{-1}(f(A))
                                 \Rightarrow \overline{A} \leq \overline{f^{-1}(B)} (closure property A \leq B \Rightarrow \overline{A} \leq \overline{B})
                                 \Rightarrow \overline{A} \subseteq f^{-1}(\overline{B}) \subseteq f^{-1}(\overline{B}) by (i)
                                \Rightarrow \overline{A} \leq f'(\overline{B})
                               \Rightarrow f(\bar{A}) \leq f(f^{-1}(\bar{B}))
                              \Rightarrow f(\overline{A}) \leq \overline{B} = \overline{f(A)} \quad (B = f(A) \Rightarrow \overline{B} = \overline{f(A)})
                              \Rightarrow f(\bar{A}) \leq \overline{f(A)}
```

```
(:::) \Rightarrow (:)
Suppose that F⊆Y and F is closed. Then
                     f'(F) = F<sub>1</sub>
We need to show that F1 is closed, i.e. F1=F1
 By (iii),
             f(\overline{F_1}) \subseteq \overline{f(F_1)} \Rightarrow f(\overline{F_1}) \subseteq \overline{f(f'(F))}
                                                                                    defin of F1 defined above
                                    \Rightarrow f(F<sub>1</sub>) \leq F = F  preimage of an image (F is closed)
                                                                                           f(f-1(B)) = B
Therefore
        \overline{F_1} \subseteq f^{-1}(f(\overline{F_1})) \implies f^{-1}(f(\overline{F_1})) \subseteq f^{-1}(F) = F_1
Since A \subseteq f^{-1}(f(A))
```

CONTRACTIONS AND CONTRACTION MAPPING THM

Motivation: solving

$$f(x)=d$$

Newtons root finding algorithm.

- Start with a guess

- construct a sequence of better guess

- note that sequence converges.

Turn the problem into a fixed point problem.

$$f(x)=d \iff f(x)-d=0$$

$$\Leftrightarrow g(x) = x$$

(define g(x) = f(x) - d + x)

We need a further property of f to define contractions.

Let $f:(X,d) \rightarrow (Y,\hat{d})$ be a metric space.

Definition Lipshitz

f is Lipchitz function $\iff \exists k [0,\infty) \text{ s.t. } \widehat{d}(f(x),f(x')) \leq k d(x,x')$

The constant K is called Lipchitz constant

Definition Contraction

A (strict) contraction is a Lipchitz function for which k [0.1)

Example:

 (R^k, d_2) and $f: R^k \to R^k$

 $\chi \mapsto \lambda \chi$

a contraction providing 12/<1.

Theorem Contraction mapping thm (Bernach fixed point thm)
Let (X,d) be a complete metric space, and $f:X\to X$ be a contraction.
Then f has a fixed point say y \(\times \times \)
Take any $x_0 \in X$, the sequence $(x_n)_{n=1}^{\infty}$ where
$x_n = f(x_{n-1}) \qquad x \ge 1$
iterates
converges to y. That is
$x_n \rightarrow y$ as $n \rightarrow \infty$ for any x_0
Proof: Take any xo EX, and define sequence
$x_{n} = f(x_{n-1}) \forall n \ge 1$
As f is a strict contraction, there exists KE[0,1) such that
$d(f(x), f(x')) \leq k d(x, x') \qquad \text{for all } x, x' \in X$
Aim. Show that $(x_n)_{n=1}^{\infty}$ is cauchy in which case $\exists y \in X$ s.t $x_n \rightarrow y$ as $n \rightarrow \infty$ (completeness of
Consider $d(x_n, x_{n-1}) = d(f(x_{n-1}), f(x_{n-2}))$
≤ Kd(xn-1, xn-2) (strict contraction)
$\leq K.Kd(x_{n-2},x_{n-3}) \leq K^2d(x_{n-2},x_{n-3})$
•
$\leq K^{n-1}d(x_1,x_0)$
constant once to is fixed
Consider m>n (m=n+1 for some l \in N)
$d(x_m,x_n) \leq d(x_m,x_{m-1}) + d(x_{m-1},x_n)$
$\leq d(x_m, x_{m-1}) + d(x_{m-1}, x_{m-2}) + d(x_{m-2}, x_n)$ repeated use of
$\leq d(x_m, x_{m-1}) + d(x_{m-1}, x_{m-2}) + \cdots + d(x_{n+1}, x_n)$ Δ - inequality
$\leq K^{m-1}d(x_1,x_0)+K^{m-2}(x_1,x_0)+\cdots+K^nd(x_1,x_0)$
$= d(x_1,x_0) \left(K^{m-1} + K^{m-2} + \cdots + K^n \right)$

```
= k^{n} d(x_{1}, x_{0}) (1 + k + \cdots + k^{m-1-n})
                            = K^{n} d(x_{1}, x_{0}) (1 + K + \cdots + K^{\ell-1}) \leq K^{n} d(x_{0}, x_{1}) (1 + K + \cdots + K^{\ell-1} + K^{\ell} + \cdots)
    Recall geometric series with common ratio r is a series of the form
                                  1+\gamma+\gamma^2+\cdots+\gamma^2 \longrightarrow 1 if |\gamma|<1 \longrightarrow true as contraction <math>\implies K \in [0,1)
    Thus
                d(x_m,x_n) \leq k^n d(x_1,x_0) (1+k+k^2+\cdots+k^2+\cdots) \leq \frac{k^n}{1-k} d(x_1,x_0)
    ડિ
                d(x_m,x_n) \leq k^n \left(\frac{d(x_1,x_0)}{k-1}\right)
                            = k^n \lambda where \lambda = \frac{d(x_1, x_0)}{k-1} is a constant
                                \rightarrow 0 as n \rightarrow \infty (as \lfloor k \rfloor < 1)
   Thus (x_n)_{n=1}^{\infty} is Cauchy.
    Completeness tells us that \exists y \in X \text{ s.t. } x_n \rightarrow y \text{ as } n \rightarrow \infty.
Now we show y is a fixed point; y = f(y)
Recall contractions are cts. So
                x_n \rightarrow y as n \rightarrow \infty \implies f(x_n) \rightarrow f(y) as n \rightarrow \infty continuity
We know that xn -> y But
                x_1 = f(x_0), x_2 = f(x_1), x_3 = f(x_2), x_4 = f(x_3), ..., x_{n+1} = f(x_n)
f(x_0), f(x_1), ..., f(x_n) is just x_1, x_2, x_3, ...
As limits are unique,
                            lim f(xn) = lim xn
Given \lim_{n\to\infty} f(x_n) = f(y) by continuity and \lim_{n\to\infty} x_n = y \implies f(y) = y
Uniqueness: Suppose that y also a fixed point of f, i.e.
                                      f(y) = y'
    Consider
                       d(y,y') = d(f(y),f(y')) \leq kd(y,y')
```

This only holds if y=y otherwise we'd get d(y,y')>0 and d(y,y')< d(y,y')Examples applying contraction mapping thm 1) Take f: R → R $t\mapsto \frac{1}{2}\sqrt{t^2+1}$ Show that f is a contraction and hence the sequence $x_0, x_1 = f(x_0), x_2 = f(x_1), \dots$ converges and Notice that $f(R) = [\frac{1}{2}, \infty)$ \take any real t. Then $t^2 > 0 \Rightarrow t^2 + 1 \ge 1$ $\Rightarrow \sqrt{t^2+1} \ge 1$ $\Rightarrow \frac{1}{2} \sqrt{t^2 + 1} \ge \frac{1}{2}$ So we restrict f to the subspace [1/2,00). Then $f: [\frac{1}{2}, \infty) \rightarrow [\frac{1}{2}, \infty)$ Recall the Mean Value Thm Theorem Mean Value Thm Let $g: [a,b] \to \mathbb{R}$ be continuous and differentiable. Then for any x < y in [a,b], $\exists c \in (x,y)$ s.t f'(c) = f(y) - f(x)Method: f'(c) = f(y) - f(x) $\Rightarrow |f'(c)| = \frac{|f(y) - f(x)|}{|y - x|}$ $\Rightarrow |y-x||f'(c)| = |f(y)-f(x)|$ \Rightarrow $d(y,x)|f'(c)| = d(f(y), f(x)) <math>\Rightarrow$ optimal lipshitz constant max/sup | f'(c)|
c [[a,b]

Consider
$$f'(t) = \frac{1}{2} \cdot 2t \cdot \frac{1}{4^{t+1}}$$

$$= \frac{1}{2} \sqrt{\frac{t^2}{t^2+1}} < \frac{1}{2} \quad \forall \quad t \in [1/2, \infty)$$
Take any $x < y$ in $[1/2, \infty)$. By MVT
$$|y-x| \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot |f(y)-f(x)|$$
Thus f a contraction.

Thus f as contraction with Lipschitz constant $\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}$

```
2) Fredholm equations (found in signal and image processing)
      (of the second kind)
                   f(t) = v(t) + \frac{1}{\lambda} \int_{a}^{b} k(t,s) f(s) ds
given (kernal)
  Assumptions: • v is continuous on [a, b]
                · K is continuous on [a,b]2
 Note: \int k(t,s)f(s)ds = F(t)
  Can we turn this into a fixed point problem and use contraction mapping thm.
  Work in (([a,b], R) equipped with do metric
                            (Q) is this complete? Ans: Yes)
  As k is continuous on [a,b]2, then I M>0 such that
                      Define the function T on C([a,b]) by
                        (Tf)(t) = v(t) + \int k(s,t)f(s)ds
 So a solution to
                 f(t) = V(t) + \int_{0}^{b} K(t,s) f(s) = (Tf)(t)
    a solution f to our original Freedholm equation is a fixed point of T
                                   T: C([a,b]) \rightarrow C([a,b])
  Apply CMT!!!
```

$$| (Tf)(t) - (Tg)(t)| = |y(t) + \frac{1}{2} |^{b} k(t,s) f(s) ds - y(t) - \frac{1}{2} |^{b} k(t,s) g(s) ds |$$

$$= |f|^{b} k(t,s) (f(s) - g(s)) ds |$$

$$\leq \frac{1}{|\mathcal{X}|} |^{b} |^{b} k(t,s) |^{b} |^{b} (f(s) - g(s)) ds |$$

$$\leq \frac{1}{|\mathcal{X}|} |^{b} |^{b} |^{b} |^{b} (f(s) - g(s)) |^{b} ds |$$

$$= \frac{M}{|\mathcal{X}|} |^{b} |$$

```
Prove that (<[(a,b)], da) is complete.
Proposition,
   The metric space C([a,b]) equipped with do metric
                     d_{\infty}(f,g) = \sup\{|f(t)-g(t)| \ t \in [a,b]\}
   is complete
Proof:
   Let (f_n)_{n=1}^{\infty} be any arbitrary Cauchy sequence
   Thus for any E>O, 3 N>O, s.t doo(fn,fm) < E Y n,m>N
                    d_{\infty}(f_n, f_m) < \varepsilon \implies \sup\{|f_n(t) - f_m(t)| | t \in [a, b]\} < \varepsilon
                                           \Rightarrow |f_n(t) - f_m(t)| < \epsilon \ \forall \ m, n > N \ \text{and} \ all \ t \in [a,b]
                                          \Rightarrow \{f_n(t)\}_{n\geq 1} is cauchy for any fixed t\in [a,b]
                                                     ? sequence of real numbers
   But R is complete \Rightarrow \{f_n(t)\}_{n\geq 1} converges.
                                \Rightarrow \exists f_t \in \mathbb{R} such that f_n(t) \to f_t as n \to \infty
   Construct candidate limit
                         f:[a,b] \rightarrow R; f(t) = f_t
   We need to show that
      ?) f_n \rightarrow f as n \rightarrow \infty
      ii) f is continuous \implies f \in C[a,b]
   (i) Showing f_{\Lambda} \rightarrow f as \Lambda \rightarrow \infty
      We need to show that for any given, \varepsilon>0, \exists N=N(\varepsilon) s.t
                           do(fn,+)< € Vn>N.
      Since by assumption Ifmy is Cauchy,
                             d_{\infty}(f_{n},f_{m}) < \varepsilon \quad \forall m,n > N.
          d_{\infty}(f_{n}, f_{m}) < \varepsilon \implies \sup\{|f_{n}(t) - f_{m}(t)| : t \in [a, b]\} < \varepsilon
```

```
\Rightarrow |f_n(t)-f_m(t)| < \varepsilon \quad \forall m,n>N \text{ and all } t \in [a,b]
       Now consider |fn(t)-f(t)|
             |f_n(t) - f(t)| = |f_n(t) - f_m(t) + f_m(t) - f(t)|
                                \leq |f_n(t) - f_m(t)| + |f_m(t) - f(t)|
                                                                                   triangle inequality
                                < \varepsilon + |f_{\mathbf{m}}(t) - f(t)|
       Since as shown above \{f_m(t)\}_{m\geq 1} converges to f(t) as m\to\infty and therefore
                   |f_m(t)-f(t)| \rightarrow 0 as m \rightarrow \infty and hence
                   |f_n(t)-f(t)| \le \forall n>N, \text{ and all } t \in [a,b]
      Hence we get
                    do (fn, f) SE Vn>N
          \Rightarrow fn\rightarrowf as n\rightarrow\infty
(ii) Showing that f is continuous, fix to [a,b]
    We need to show that
       \lim_{t \to t_0} f(t) = f(t_0) \iff \forall \varepsilon > 0, \exists \delta = \delta(\varepsilon) \text{ s.t. } \forall |t - t_0| < \varepsilon, |f(t) - f(t_0)| < \varepsilon
       a) Since fn -> f uniformly (shown above), choose N=N(x) such that Yn>Nx,
                d_{\infty}(f_{n},f) < \varepsilon/3 \Rightarrow |f_{n}(t)-f(t)| < \varepsilon/3 \quad \forall t \in [a,b]
       (b) Since fn is continuous as \{f_n\}_{n=1}^{\infty} is a sequence on C[a,b],
                   |f_n(t)-f_n(t_0)|<\frac{\varepsilon}{3}
      (c) And further, since {fn(t)}n=1 is cauchy, it converges by completeness of
               \Rightarrow |f_n(t)-f(t)| < \varepsilon
   Therefore for if It-to/<8,
          |f(t)-f(t_0)| = |f(t)-f_n(t)+f_n(t)-f_n(t_0)+f_n(t_0)-f(t_0)|
                          \leq |f(t)-f_{n}(t)|+|f_{n}(t)-f_{n}(t_{0})|+|f_{n}(t_{0})-f(t_{0})|
                          \langle \xi + \xi + \xi = \xi
```

